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We describe a hybrid numerical method for modeling the electromagnetic inter-
action of a low-loss ceramic material in a single-mode waveguide applicator. The
method we propose utilizes a combination of asymptotic and numerical techniques.
The interaction between the applicator and the electromagnetic fields is described
using scattering matrix theory and the interaction between the electromagnetic fields
and the ceramic is determined numerically. Several simulations, including a low-
loss slab and low-loss post, are presented to show the accuracy and simplicity of
this method along with the relatively small amount of computer resources it requi-
res. c© 1998 Academic Press

1. INTRODUCTION

Over the last several the years, the use of microwave energy to sinter or join a wide variety
of ceramic materials has become an important technology. This technology has the capability
of producing high quality materials efficiently because heat is generated rapidly within the
material instead of diffusing slowly into its surface. However, this technology cannot be
utilized to its full potential without a more fundamental understanding of the complicated
interaction between the waveguide applicator, the electromagnetic fields, and the ceramic.
Detailed knowledge of this interaction will lead to a more complete characterization of
the heating process and thereby help to prevent nonuniform heating and lead to future
optimizations of the heating process.

The challenge of obtaining this detailed knowledge is computationally daunting; the
time harmonic Maxwell’s equations are coupled in a highly nonlinear manner to the heat
equation. The nonlinearities are threefold. The first is the dependence of the effective con-
ductivity σ on the temperature. The second is the source termσ |E|2 in the heat equation,
whereE is the electric field in the material. The third is the thermal boundary condition
on the surface of the material; it is proportional to the fourth power of the temperature. In
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the absence of any simplifications (e.g., small sample, small Biot number, etc.) the only
recourse is to numerically solve these equations in a marching manner: First, the effec-
tive conductivity is computed from the initial temperature distribution. Second, Maxwell’s
equations are solved numerically. Third, the heat equation is marched forward one time
step using another numerical method. The effective conductivity is computed at the new
temperature distribution and the process is continued. This iteration procedure continues
until a steady temperature is obtained or until thermal runway occurs and the sample is
damaged.

A numerical technique frequently used to solve the electromagnetic portion of the march-
ing scheme is the finite difference time domain (FDTD) method [1–3, 17, 18]. This method
is used extensively in computational electromagnetics because it is relatively easy to imple-
ment and requires no matrix storage or inversions. The technique is based upon the limiting
amplitude principal [4] which states that an incident time harmonic wave ultimately pro-
duces a time harmonic response. The FDTD method exploits this principal in an explicit
fashion: the numerical solution starts with an arbitrary initial condition and is stepped for-
ward in time until a time harmonic response is obtained. In the context of microwave heating
of ceramic materials, the convergence rate of this technique depends upon the amount of
electromagnetic energy absorbed by the ceramic target and upon the time required for the
transient electromagnetic fields to radiate out of the waveguide applicator. Consequently,
this technique works effectively for lossy ceramics, which readily absorb electromagnetic
energy, and for lowQ cavities, where the transient electromagnetic fields radiate out of the
cavity rather quickly.

Other numerical methods, such as finite element (FE) algorithms [5, 6], are also used to
solve the time harmonic Maxwell’s equations. These elliptic solvers require the construction
and numerical inversion of large matrices. For lowQcavities and lossy ceramics the resulting
matrices are well conditioned.

In many important applications, the ceramic is a low loss material which absorbs only
a small amount of electromagnetic energy. Consequently, the cavity must have a highQ
to allow the electromagnetic fields to build up sufficient strength to heat the ceramic. This
scenario makes both the FDTD and FE methods inefficient. For the FDTD method, the
electromagnetic fields become trapped within the cavity and the transients are forced to
linger for many periods before radiating out of the structure. This dramatically increases
the time needed for the fields to converge to a time harmonic steady state. For the FE
method, the resulting matrices become highly ill-conditioned because of a near resonant
state. Either technique can still provide a detailed description of the electromagnetic-material
interaction, but both will require more extensive computer resources. This is especially true
when parameter studies are needed to deduce trends and functional relationships.

In this paper we focus on the electromagnetic aspects of the heating problem. Specifically,
we develop a hybrid numerical method for describing the interaction of an electromagnetic
wave with a low loss ceramic material in a highQ cavity. The method we propose utilizes
a combination of asymptotic and numerical techniques. The asymptotic aspects are based
upon scattering matrix theory, which assumes that the evanescent modes excited by the
iris have a negligible effect on the ceramic, and the evanescent modes generated by the
ceramic have a negligible effect on the iris. These assumptions are guaranteed in microwave
applicators by carefully choosing the location of the ceramic and the size of the cavity.
However, in other applications, such as optical resonators and couplers, these evanescent
waves play a crucial role [7].
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The use of scattering matrix theory allows us to decompose the electromagnetic problem
into two independent pieces. The first requires the computation of the reflection coefficient
for an iris in an infinite homogeneous waveguide. This problem is classical and there are
many excellent approximations to its solution [8]. The second requires the computation
of the electromagnetic fields for a ceramic target in an infinite homogenous waveguide
with a short located atZ = L. Because there is little resonant character to this problem, it
is not ill-conditioned and any accurate numerical method can be used to approximate its
solutions. Both the FDTD and FE methods are excellent candidates. The solutions of these
two pieces are then analytically combined using a simple formula to produce an accurate
approximation to the original problem. The result is an efficient and accurate hybrid method.

We note that for a given aperture opening and frequency, our hybrid method requires an
extremely accurate approximation of the resonant lengthL of the cavity. The determination
of this critical length is a difficult problem in itself and has been addressed by other authors
[9, 10]. The technique we develop is along similar lines and requires a single numerical
(e.g., FDTD) calculation for a sample in an infinite and homogeneous waveguide, and an
approximation to the reflection coefficient for an iris. We also note that a straightforward
application of the FDTD method to the loaded cavity problem possesses a similar problem.
For this case, the length of the cavity and the aperture are fixed and the resonant frequency
must be determined. This can be done effectively by obtaining the distorted wavelength of
the field in the loaded cavity and backing out the perturbed eigenfrequency [11].

We observe here that our splitting of the elliptic scattering problem into two pieces
is similar in spirit to domain decomposition techniques [12]. However, these techniques
require an iteration procedure that connects all the sub-domains; our connection is done
analytically. If the FDTD method is used to numerically obtain time harmonic solutions to
our two independent problems, then our technique bears some resemblance to the FDTD
diakoptic method [13, 14]. However, this technique requires time domain convolutions for
connecting the sub-regions of the structure. This is not required for our hybrid method as
we analytically combine the two time harmonic solutions.

The outline of this paper is as follows. In Section 2, the problem of the interaction of an
incident microwave mode with an arbitrary cylindrical, low-loss ceramic in aTE103 waveg-
uide applicator is presented. In Section 3, scattering matrix theory is used to describe the
interaction between the applicator, the incident electromagnetic field, and the electromag-
netic field reflected by the ceramic. In Section 4, the FDTD method is used to determine
the interaction between the electromagnetic fields, the ceramic, and the short in the absence
of the iris. In Section 5, two example problems are presented to demonstrate the accuracy
and computational efficiency of this hybrid method. Finally, in Section 6, a method for
computing resonant lengths is described.

2. FORMULATION

A ceramic sample of arbitrary cylindrical shape occupies a portion of aTE103 waveguide,
shown in Fig. 1. The applicator is comprised of a waveguide, a symmetric iris, and a movable
back wall, called a short. The cavity and its load are excited by the incidentTE10 mode

Einc = E0ei K1Z sin(π X/W)Ŷ (1a)

H inc = E0ei K1Z

[
K1

µ0ω
sin(π X/W)X̂ − i π

Wµ0ω
cos(π X/W)Ẑ

]
, (1b)
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FIG. 1. TE103 waveguide applicator with an arbitrary cylindrical ceramic material.

whereE0 is the strength of the incident mode,K1 =
√

ω2/c2 − π2/W2 is the wave number
of the propagating mode,ω is the source frequency,c is the speed of light in a vacuum,
µ0 is the magnetic permeability of free space, andW is the width of the guide. The time
harmonic electromagnetic fields in the applicator are described by Maxwell’s equations,

∇ × E = i ωµ0H, (2a)

∇ × H = −i ωεE + σE, (2b)

whereε, the effective permittivity, is a function of position. Outside the sampleε = ε0, the
permittivity of free-space. Inside the sampleε = εR, the real effective electrical permitti-
vity. The effective electrical conductivity,σ , takes the electrical losses of the material into
account.

The electromagnetic fields satisfy boundary conditions which follow from Maxwell’s
equations and from the assumption that the waveguide walls and iris are perfectly conduct-
ing. These conditions are written as

E × n = 0, (3)

and correspond to the tangential components of the electric field vanishing on the waveguide
walls and iris. In addition, the tangential components of the electric and magnetic fields
must be continuous across the surface of the sample. Specifically, we have

[H × n]S = 0, (4a)

[E × n]S = 0, (4b)

where [ ]S denotes the jump across the sample surfaceS.
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Finally, the waveguide feeding the cavity is assumed to support only aTE10 mode. Thus,
for Z ¿ 0 the electric field takes the form

E = E0[ei K1Z + R0e−i K1Z ] sin(π X/W)Ŷ, (5)

whereR0 is the amplitude of the reflected mode. The magnetic field is given by a similar
expression.

For convenience in the analysis which follows, we introduce the dimensionless variables
and parameters,

Ẽ = E/E0, H̃ = H/(
√

ε0/µ0E0), (x, y, z) = (X, Y, Z)/W, (6a)

(l , h, a) = (L , H, A)/W, t = ωT, k1 = K1W. (6b)

The problem now at hand is to find̃E andH̃ that satisfy the equations

∇ × Ẽ = ikH̃, (7a)

∇ × H̃ = −ikẼ + σk

ωε
Ẽ, (7b)

in the region(−∞ < z < l ) and take the asymptotic form

Ẽ = [eik1z + R0e−ik1z] sin(πx)ŷ, (8a)

H̃ = k1

k
[eik1z − R0e−ik1z] sin(πx)x̂ + −i

π

k
[eik1z + R0e−ik1z] cos(πx)ẑ, (8b)

far away from the iris(z¿ 0). The index of refraction is defined asn2 = ε/ε0, the di-
mensionless wave number byk = ωW/c, and the dimensionless propagation constant by
k1 = K1W. These equations are subject to the boundary conditions described above. To-
gether they form an elliptic boundary value problem on an infinite domain which cannot be
solved analytically, even for simply shaped targets.

We observe here that for a given aperture and frequency, the cavity will be highly resonant,
for discrete values ofl . These values are difficult to obtain for an arbitrary target. In Section 6
we describe a method which accurately and explicitly estimates these critical lengths.

3. THE ASYMPTOTIC METHOD

The basic idea behind the analysis that follows is to mathematically remove the iris from
the problem. We do this by applying scattering matrix theory to describe the interactions of
the iris with the incident electromagnetic field and with the electromagnetic field reflected
by the ceramic sample and the short. This theory is asymptotic in character, as it neglects
the evanescent modes excited by the iris and ceramic sample.

We begin by placing an imaginary plane, labeledzI in Fig. 2, between the iris and the
cylindrical target. The positionzI is chosen so that the evanescent modes generated by the
iris and the cylinder are negligible. The field at this plane is given by

ẼI = [T1eik1z + E1e−ik1z] sin(πx)ŷ, (9)

whereT1 andE1 are unknown at this point in time.
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FIG. 2. Scattering matrix schematic for aTE103 waveguide applicator.

We next focus our attention on the regionz< zI , which contains only the iris. The iris is
irradiated by two propagating modes. The first comes from the source, i.e., the first term in
(8a). The second mode is produced by the scattering from the cylinder and short, i.e., the
second term in (9). The iris appears to reflect a mode to the left, i.e., the second term in
(8a), and a mode to the right, i.e., the first term in (9). These coefficients are related by the
linear equations

R0 = r1(a) + (1 + r1(a))E1, (10a)

T1 = (1 + r1(a)) + r1(a)E1, (10b)

where the matrix is called the scattering matrix for the iris. The matrix elementr1(a) is the
reflection coefficient for an iris in an infinite and homogeneous waveguide and 1+ r1(a) is
the corresponding transmission coefficient. These coefficients depend upon the iris height,
a, and the dimensionless wave numberk. Approximations forr1 are given in many standard
texts, one of which is [8]

r1(a, k) = −i S

1 + i S
, (11a)

S = S(a, k) = π

k1

[
tan2(πa) − 3δ3 sin4(πa)

1 − δ3 cos2(πa)

]
, (11b)

δ3 =
√

1 − k2

9π2
. (11c)

We next focus our attention on the region to the right of the plane,z> zI . The first term
in Eq. (9) can be interpreted as an incident mode of strengthT1 which impinges upon the
cylindrical target and the short. The second term in Eq. (9) is the wave reflected by this
structure. The amplitude of this wave is related toT1 by E1 = γ1T1. The reflection coefficient
γ1 is the amplitude of the reflected mode caused by a unit incident field upon the ceramic
sample and the shortwithout the iris. Inserting this relationship into Eq. (10b) we obtain

T1 = 1 + r1(a)

1 − r1(a)γ1
. (12)
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Inserting these results into (10a) we find the amplitude of the reflected mode

R0 = r1(a) + (1 + r1(a))γ1

[
1 + r1(a)

1 − r1(a)γ1

]
. (13)

These equations show the explicit dependence ofT1 and R0 upon the iris heighta and
reflection coefficientγ1.

Finally, we summarize the above results. According to our approximation, the ceramic
sample is essentially irradiated by aTE10 mode of strengthT1. This mode can be thought
of as propagating in an infinite and homogeneous guide until it interacts with the cylinder
and short to produce a reflected wave. This reflected mode is of strengthγ1T1. The effects
of the iris are contained inT1 andR0.

To complete the description of our method we define

e = Ẽ/T1, and h = H̃/T1, (14)

which satisfy Maxwell’s equations. The boundary conditions on the lateral walls of the
waveguide, on the short, and across the sample are the same as before. However, we now
have forz¿ 0

e = [eik1z + γ1e−ik1z] sin(πx)ŷ, (15a)

h = k1

k
[eik1z − γ1e−ik1z] sin(πx)x̂ + −i

π

k
[eik1z + γ1e−ik1z] cos(πx)ẑ. (15b)

The electromagnetic boundary value problem we must solve is Eq. (7) fore and h
throughout the entire waveguidewithout the iris. Once this is done,γ1 is deduced from
Eq. (15), which allowsT1 to be obtained from Eq. (12) andR0 to be obtained from Eq. (13).
The electric fieldẼ is then obtained from Eq. (14).

4. NUMERICAL METHOD

We use the finite difference time domain (FDTD) method to solve Eq. (7) throughout the
entire waveguide without the iris, shown in Fig. 3. The electromagnetic fields are written

FIG. 3. FDTD computational domain for hybrid method.
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there as

e = Ey(x, z, t)y,

h = Hx(x, z, t)x + Hz(x, z, t)z.

Accordingly, Eqs. (7) are replaced by the time dependent equations

∂ Hx

∂t
= 1

k

∂Ey

∂z
, (16a)

∂ Hz

∂t
= −1

k

∂Ey

∂x
, (16b)

∂Ey

∂t
= 1

kε

(
∂ Hx

∂z
− ∂ Hz

∂x

)
− σ Ey. (16c)

The electric and magnetic fields are evaluated alternatively at half time steps(n1t and
(n + 1/2)1t) and the spatial coordinates(x, z) are positioned at(i 1, j 1):

Hn+1/2
x (i, j ) = Hn−1/2

x (i, j ) + 1t

k1

(
En

y(i, j + 1) − En
y(i, j )

)
(17a)

Hn+1/2
z (i, j ) = Hn−1/2

z (i, j ) − 1t

k1

(
En

y(i + 1, j ) − En
y(i, j )

)
(17b)

En+1
y (i, j ) =

[(
1 − σ1t

2

)
En

y(i, j ) + 1t

kε1

(
Hn+1/2

x (i, j ) − Hn+1/2
x (i, j − 1)

− Hn+1/2
z (i, j ) + Hn+1/2

z (i − 1, j )
)]/(

1 + σ1t

2

)
. (17c)

To truncate our computational domain we apply a mode killing, non-reflecting boundary
operator to the total electric field on the planezl = −l . Choosingl large enough assures us
that the evanescent waves are negligible. It follows from the operators presented in Ref. [15]
that

∂Ey

∂z
− k1

∂Ey

∂t
= 2ik1ei (k1zl −t) sin(πx). (18)

This operator allows incident waves to propagate to the right (into the computational domain)
and annihilates the reflected mode which propagates to the left (out of the computational
domain). Higher order boundary operators are derived in [15], but we shall not pursue them
here.

In discretized form Eq. (18) is written as

En+1
y (1, j ) = En−1

y (1, j )− 1t

k11

(
En

y(0, j )− En
y(2, j )

)− 4i 1tei (k11−n1t)sin(π j 1). (19)

To obtain an expression forEn
y(0, j ), a point outside the computational domain, we dis-

cretize the following nondimensional wave equation, centered at(1, j ),

∂2Ey

∂t2
= 1

k2

(
∂2Ey

∂x2
+ ∂2Ey

∂x2

)
. (20)
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This provides the following expression for the left boundary condition:

En+1
y (1, j ) =

[
−En−1

y (1, j ) + 2En
y(1, j ) +

(
1t

k1

)2(
2En

y(2, j ) − 4En
y(1, j ) (21)

+ En
y(1, j + 1) + En

y(1, j − 1) + k11

1t
En−1

y (1, j ) − 4ik11ei (k11−n1t)

× sin(π j 1)
)]/(

1 + k11t

k21

)
. (22)

On the surface of the ceramic, the boundary conditions from Eq. (4) require that the
tangential components of the electric and magnetic fields be continuous. We satisfy these
conditions by using average values for the permittivity on the boundary points of the ceramic.
Finally, we prescribeEy = 0 on the shortz= zr .

5. SIMULATIONS

To demonstrate the accuracy and computational efficiency of this hybrid numerical
method, we present two example problems. The first is concerned with the microwave
interaction with a slab which completely fills the cross-section of the waveguide. In the
second, a cylinder is placed in the guide as shown in Fig. 1. For each case we have fixed the
microwave frequency atf = 2.45×109 Hz, the width of the waveguide atW = 109.22 mm,
and the iris height atA= 17.5 mm. This gives usk = 5.6 anda = 0.42. In each example
we must specify a resonant lengthl . When the sample is a slab, an approximate formula
has been presented in Ref. [16]. When the sample is a post, the method presented in the
following section is used. For both cases we use the FDTD scheme to numerically solve
Eqs. (16) for the scaled fieldse andh. The iris is not present in these calculations. Once
the reflection coefficientγ1 ande are determined numerically, the electric field is obtained
from Ẽ = T1e, whereT1 is given by Eq. (12). Finally, we took1 = l/800, 1t = k1/

√
2,

andzl = 0.
We consider in our first example a slab of width 20.8 mm whose center is placed at

Z = 110 mm. The resonant length for this case isL = 241.5 mm (l = 2.21) which-corres-
ponds to theTE103 mode for the closed cavity. The length,l , of the cavity is chosen to
maximize the electric field of the cavity if the sample is loss-less.

Figure 4 shows the amplitude of the electric field,Ey, throughout the waveguide applicator
when the effective electrical conductivity,σ , equals 0. The dimensionless incident electric
field has a strength of one and the maximum of the electric field in the cavity is 36. This
shows the resonant character of the applicator. Figure 5 shows the maximum of the electric
field for three different values of electrical conductivity (σ = 0.0, σ = 0.001, andσ = 0.01).
It is readily apparent from these simulations that increasing the conductivity, while keeping
the lengthl fixed, produces smaller fields. This is a detuning effect which is characteristic
of high Q cavities.

The convergence times (in CPU minutes on a SGI Indigo2 Impact R10000 workstation)
for these three cases were 70, 40, and 15 min, respectively. We realize that these convergence
times are large for the simple geometry we are considering. This is because a fine mesh (i.e.,
small1) is needed for the stringent converge of the electromagnetics fields to ensure that
the cavity is resonant. To check these results and compare convergence times, we applied
the FDTD to the same scattering problem with the iris present. The results were identical to



                

A HYBRID METHOD FOR SINGLE MODE CAVITIES 515

FIG. 4. Amplitude of Ey throughout theTE103 waveguide applicator containing a slab withσ = 0.

the hybrid method. However, the convergence times for these simulations were 405, 210,
and 80 min, respectively, a factor of roughly six times slower.

We consider in our second example a square post of width 41.5 mm whose center is
placed atX = 54.6 mm andZ = L/2, as shown in Fig. 1. The resonant length is determined
using the method presented in the following section. It required one numerical simulation
using the FDTD scheme to determine the required scattering matrix (i.e., to computerc and
tc). This preliminary calculation took 55 CPU min (approximately one tenth the time of
the hybrid calculation). The resonant length for this case isL = 279.7 mm (l = 2.56) which
corresponds to theTE103 mode for the closed cavity. The length,l , of the cavity is chosen
to maximize the electric field of the cavity if the sample is loss-less.
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FIG. 5. Maximum amplitude ofEy throughout theTE103 waveguide applicator with containing a slab with
σ = 0.0, σ = 0.001, andσ = 0.01.

Figure 6 shows the amplitude of the electric field,Ey, throughout the waveguide applicator
when the effective electrical conductivityσ = 0. The dimensionless incident electric field
has a strength of one and the maximum of the electric field in the cavity is 36. The contour
plot focuses in on the area surrounding the post in such a way that the scaling between the
z andx axis are in one-to-one correspondence. The convergence time for this simulation
was 635 min. Again, this convergence time is large because a fine mesh (i.e., small1) is
needed for the stringent converge of the electromagnetics fields to ensure that the cavity
is resonant. To check these results and compare convergence times, we applied the FDTD
to the same scattering problem with the iris present. The results were identical to the
hybrid method. However, the convergence time was 5060 min, a factor of roughly 8 times
slower.

6. CALCULATION OF RESONANT LENGTHS

The hybrid method described in this paper requires an extremely accurate approximation
of the resonant length of the cavity. This critical length depends upon the size of the aperture
and upon the geometry and electrical permittivity of the ceramic. The technique we now
develop to determine this critical length is again based upon scattering matrix theory.

We begin by considering the scattering problem shown in Fig. 7 whereE0 is the amplitude
of the incident mode. The short has been removed for the moment. We again place a
imaginary plane atz = zI . Focusing our attention to the left of this plane, the iris again is
irradiated by two modes of strengthE0 andE1 and reflects two modes of strengthsR0 and
T1. These coefficients are related by Eqs. (10).

Next we consider the region to the right ofz = zI . If we irradiate the ceramic by two
incident modes of strengthsE2 andE3 and denote their reflected mode amplitudes byR2
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FIG. 6. Amplitude of Ey throughout theTE103 waveguide applicator containing a post withσ = 0.

andR3, respectively, then these amplitudes are related by

R2e−ik1l/2 = rcE2eik1l/2 + tcE3, (22a)

R3 = tce
ik1l/2E2 + rcE3. (22b)

Hererc andtc are the reflection and transmission coefficients caused by an incident mode of
unit strength when the cylinder is located atz = 0 in an otherwise empty and homogeneous
infinite waveguide. The cylinder is assumed to be symmetric about the pointz = 0.

FIG. 7. Scattering matrix schematic for resonant length calculation.
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These coefficients depend upon the geometry and permittivity of the ceramic and are
obtained numerically. If we only send a mode of unit amplitude in from the left, then we
can use the FDTD technique described in this paper to computerc and tc. However, we
must now truncate the numerical domain on the right atz= zr ; this boundary is chosen
far enough to the right of the cylinder to neglect evanescent modes. Then the appropriate
non-reflecting boundary operator is [15]

∂Ey

∂z
+ k1

∂Ey

∂t
= 0. (23)

The coefficientsrc andtc are obtained from this numerical calculation. When the ceramic
contains no loss, power is conserved and these coefficients obey the relationships

|rc|2 + |tc|2 = 1 (24a)

Real(rct
∗
c ) = 0. (24b)

Whenrc andtc are determined numerically, these relationships are not satisfied exactly. This
limits the accuracy of the calculation of the resonant length. Therefore, in the calculations
which follow, we takerc to be the value determined numerically and taketc to be the value
which allows these relationships to be satisfied exactly. That is,

tc =
√

1 − |rc|2ei [ π
2 +ph(rc)], (25)

whereph(rc) is the phase ofrc.
We now connect these two problems at the planez= zI . There we observe that the

incident mode (from the right) on the iris is the reflected wave off the post. Equating modal
amplitudes we findE1 = R2. Similarly, the mode reflected by the iris to the right is the
incident mode on the cylinder. Thus, we haveT1 = E2. Finally, if the short is placed at
z= l/2 and the cylinder located atz = 0, thenR3 andE3 are related byE3 = 0(l )R3. Here
0(l ) = −exp(ik1l ) the reflection coefficient from the short. Combining these results with
Eq. (22) givesE1 = γ1T1 where

γ1 =
(

rc + (r 2
c − t2

c

)
eik1l

1 + rceik1l

)
eik1l . (26)

This is the reflection coefficient for a loss-less post located atz= l/2 in a homogeneous
waveguide with a short atz= l . It follows from this expression and Eq. (24) thatγ1 = ei θ ,
i.e., it is a complex number of unit amplitude.

The resonant length of the cavity will be length which maximizes|T1|. From Eq. (12), it
is apparent that this maximum value corresponds to the minimum value of|1− r1γ1|. Using
the approximation forr1 in Eq. (11), we find that|T1| will be maximum in value whenθ is
given by

θM = π − tan−1(1/S). (27)

The value of its maximum is

|T1| = (1 + 2S2 − 2S
√

1 + S2)−1/2 (28)
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which for small apertures(SÀ 1) is approximated by

|T1| = 2S. (29)

Settingγ1 = ei θM , with θM given by Eq. (27), inserting this result into Eq. (26), and solving
for l we obtain

l = Real

(
ln(u)

ik1

)
, (30)

where

u =
−rc(1 − ei θM ) −

√
r 2

c (1 − ei θM )2 + 4
(
r 2

c − t2
c

)
ei θM

2
(
r 2

c − t2
c

) .

7. CONCLUSIONS

A hybrid numerical method was developed for describing the interaction of an electro-
magnetic wave with a low-loss ceramic material in a highQ cavity. The method utilizes
a combination of asymptotic and numerical techniques. The resultant hybrid method was
used on two example problems: a slab and a post. It was found for these cases to be ap-
proximately six times faster than a straightforward application of the FDTD method. This
difference would become even greater if the aperture were made smaller than 17.5 mm.
However, both our hybrid method and a straightforward application of the FDTD method
to the full problem suffer from the requirement that an extremely accurate estimate of the
resonant length (frequency) is required. When theQ of the cavity is extremely large, then
an error of magnitude1 in the resonant lengthl may detune the cavity and yieldO(1)

electric fields. Clearly, this scenario will defy any method.
It is worthwhile to point out that the numerical component of our hybrid scheme is not

bound to the FDTD method. Other numerical methods, such as finite element methods or
any elliptic solver, can be used.
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