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We describe a hybrid numerical method for modeling the electromagnetic inter-
action of a low-loss ceramic material in a single-mode waveguide applicator. The
method we propose utilizes a combination of asymptotic and numerical techniques.
The interaction between the applicator and the electromagnetic fields is described
using scattering matrix theory and the interaction between the electromagnetic fields
and the ceramic is determined numerically. Several simulations, including a low-
loss slab and low-loss post, are presented to show the accuracy and simplicity of
this method along with the relatively small amount of computer resources it requi-
Ies. (© 1998 Academic Press

1. INTRODUCTION

Over the last several the years, the use of microwave energy to sinter or join awide va
of ceramic materials has become animportanttechnology. This technology has the cape
of producing high quality materials efficiently because heat is generated rapidly within
material instead of diffusing slowly into its surface. However, this technology cannot
utilized to its full potential without a more fundamental understanding of the complical
interaction between the waveguide applicator, the electromagnetic fields, and the cer:
Detailed knowledge of this interaction will lead to a more complete characterization
the heating process and thereby help to prevent nonuniform heating and lead to fi
optimizations of the heating process.

The challenge of obtaining this detailed knowledge is computationally daunting;
time harmonic Maxwell's equations are coupled in a highly nonlinear manner to the t
equation. The nonlinearities are threefold. The first is the dependence of the effective
ductivity ¢ on the temperature. The second is the source &g in the heat equation,
whereE is the electric field in the material. The third is the thermal boundary conditit
on the surface of the material; it is proportional to the fourth power of the temperature
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the absence of any simplifications (e.g., small sample, small Biot number, etc.) the
recourse is to numerically solve these equations in a marching manner: First, the e
tive conductivity is computed from the initial temperature distribution. Second, Maxwe
equations are solved numerically. Third, the heat equation is marched forward one
step using another numerical method. The effective conductivity is computed at the
temperature distribution and the process is continued. This iteration procedure conti
until a steady temperature is obtained or until thermal runway occurs and the samf
damaged.

A numerical technique frequently used to solve the electromagnetic portion of the ma
ing scheme is the finite difference time domain (FDTD) method [1-3, 17, 18]. This mett
is used extensively in computational electromagnetics because it is relatively easy to in
ment and requires no matrix storage or inversions. The technique is based upon the lin
amplitude principal [4] which states that an incident time harmonic wave ultimately p
duces a time harmonic response. The FDTD method exploits this principal in an exp
fashion: the numerical solution starts with an arbitrary initial condition and is stepped-
ward in time until a time harmonic response is obtained. In the context of microwave hea
of ceramic materials, the convergence rate of this technique depends upon the amo
electromagnetic energy absorbed by the ceramic target and upon the time required fc
transient electromagnetic fields to radiate out of the waveguide applicator. Conseque
this technique works effectively for lossy ceramics, which readily absorb electromagn
energy, and for lov@) cavities, where the transient electromagnetic fields radiate out of
cavity rather quickly.

Other numerical methods, such as finite element (FE) algorithms [5, 6], are also ust
solve the time harmonic Maxwell’'s equations. These elliptic solvers require the construc
and numerical inversion of large matrices. For [Qwavities and lossy ceramics the resulting
matrices are well conditioned.

In many important applications, the ceramic is a low loss material which absorbs c
a small amount of electromagnetic energy. Consequently, the cavity must have @ hi
to allow the electromagnetic fields to build up sufficient strength to heat the ceramic.
scenario makes both the FDTD and FE methods inefficient. For the FDTD method,
electromagnetic fields become trapped within the cavity and the transients are force
linger for many periods before radiating out of the structure. This dramatically increa
the time needed for the fields to converge to a time harmonic steady state. For th
method, the resulting matrices become highly ill-conditioned because of a near resc
state. Either technique can still provide a detailed description of the electromagnetic-ma
interaction, but both will require more extensive computer resources. This is especially
when parameter studies are needed to deduce trends and functional relationships.

Inthis paper we focus on the electromagnetic aspects of the heating problem. Specifi
we develop a hybrid numerical method for describing the interaction of an electromagr
wave with a low loss ceramic material in a highcavity. The method we propose utilizes
a combination of asymptotic and numerical techniques. The asymptotic aspects are |
upon scattering matrix theory, which assumes that the evanescent modes excited k
iris have a negligible effect on the ceramic, and the evanescent modes generated [
ceramic have a negligible effect on the iris. These assumptions are guaranteed in micrc
applicators by carefully choosing the location of the ceramic and the size of the ca
However, in other applications, such as optical resonators and couplers, these evan
waves play a crucial role [7].
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The use of scattering matrix theory allows us to decompose the electromagnetic prol
into two independent pieces. The first requires the computation of the reflection coeffic
for an iris in an infinite homogeneous waveguide. This problem is classical and there
many excellent approximations to its solution [8]. The second requires the computa
of the electromagnetic fields for a ceramic target in an infinite homogenous waveg
with a short located af = L. Because there is little resonant character to this problem
is not ill-conditioned and any accurate numerical method can be used to approximat
solutions. Both the FDTD and FE methods are excellent candidates. The solutions of 1
two pieces are then analytically combined using a simple formula to produce an acct
approximation to the original problem. The resultis an efficient and accurate hybrid met

We note that for a given aperture opening and frequency, our hybrid method require
extremely accurate approximation of the resonant lehgihthe cavity. The determination
of this critical length is a difficult problem in itself and has been addressed by other auitt
[9, 10]. The technique we develop is along similar lines and requires a single humel
(e.g., FDTD) calculation for a sample in an infinite and homogeneous waveguide, an
approximation to the reflection coefficient for an iris. We also note that a straightforw
application of the FDTD method to the loaded cavity problem possesses a similar prob
For this case, the length of the cavity and the aperture are fixed and the resonant freqt
must be determined. This can be done effectively by obtaining the distorted waveleng
the field in the loaded cavity and backing out the perturbed eigenfrequency [11].

We observe here that our splitting of the elliptic scattering problem into two piec
is similar in spirit to domain decomposition techniques [12]. However, these techniq
require an iteration procedure that connects all the sub-domains; our connection is
analytically. If the FDTD method is used to numerically obtain time harmonic solutions
our two independent problems, then our technique bears some resemblance to the F
diakoptic method [13, 14]. However, this technique requires time domain convolutions
connecting the sub-regions of the structure. This is not required for our hybrid metho
we analytically combine the two time harmonic solutions.

The outline of this paper is as follows. In Section 2, the problem of the interaction of
incident microwave mode with an arbitrary cylindrical, low-loss ceramicTikEgs waveg-
uide applicator is presented. In Section 3, scattering matrix theory is used to describ
interaction between the applicator, the incident electromagnetic field, and the electror
netic field reflected by the ceramic. In Section 4, the FDTD method is used to detern
the interaction between the electromagnetic fields, the ceramic, and the short in the ab
of the iris. In Section 5, two example problems are presented to demonstrate the acc
and computational efficiency of this hybrid method. Finally, in Section 6, a method
computing resonant lengths is described.

2. FORMULATION

A ceramic sample of arbitrary cylindrical shape occupies a portioT& g waveguide,
shownin Fig. 1. The applicator is comprised of a waveguide, a symmetric iris, and a mov
back wall, called a short. The cavity and its load are excited by the incidggtmode

Einc = Eo€'Z sin(z X/ W)Y (1a)

i ~
Witoo cogn X/ W)Z |, (1b)

. K R
Hine = Eo€ 12| —L sin(r X/ W)X —
ow
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FIG. 1. TE;z;waveguide applicator with an arbitrary cylindrical ceramic material.

whereE is the strength of the incident mod€; = \/w?/c2 — w2/ W?2is the wave number
of the propagating mode, is the source frequency,is the speed of light in a vacuum,
1o is the magnetic permeability of free space, alds the width of the guide. The time
harmonic electromagnetic fields in the applicator are described by Maxwell’'s equatior

V x E =iwugH, (2a)

V xH = —iweE + oE, (2b)
wheree, the effective permittivity, is a function of position. Outside the sanapleg, the
permittivity of free-space. Inside the sample= ¢R, the real effective electrical permitti-
vity. The effective electrical conductivity;, takes the electrical losses of the material int
account.

The electromagnetic fields satisfy boundary conditions which follow from Maxwel

equations and from the assumption that the waveguide walls and iris are perfectly con
ing. These conditions are written as

Exn=0, (3

and correspond to the tangential components of the electric field vanishing on the wave
walls and iris. In addition, the tangential components of the electric and magnetic fi
must be continuous across the surface of the sample. Specifically, we have

[H x n]s = 0, (4a)
[E x n]s = 0, (4b)

where [ ks denotes the jump across the sample surface
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Finally, the waveguide feeding the cavity is assumed to support ofly@mode. Thus,
for Z « 0 the electric field takes the form

E = Eo[€":% + Rye *:Z]sin(x X/ W)Y, (5)

whereR; is the amplitude of the reflected mode. The magnetic field is given by a simi
expression.

For convenience in the analysis which follows, we introduce the dimensionless varia
and parameters,

E=E/Eo, H=H/(VelmoEo), (X.¥,2)=(X,Y,2Z)/W, (6a)
(,h,a)=(L,H, A)/W, t=oT, k=KW (6b)

The problem now at hand is to filandA that satisfy the equations
V x E = ikH, (7a)
~ - K~
v x A = —ikE + Z°F, (7b)
we
in the region(—oco < z < I) and take the asymptotic form
E = [€%% + Ree M7 sin(x)9, (8a)
~ kg ‘ . R . A . R
A= f[eIklz — Roe M7 sin(rx)k + —i %[e"‘lz + Roe ™% cos(mx)z,  (8b)

far away from the iris(z <« 0). The index of refraction is defined @€ = ¢/, the di-
mensionless wave number ky= wW/c, and the dimensionless propagation constant t
ki = K;W. These equations are subject to the boundary conditions described above
gether they form an elliptic boundary value problem on an infinite domain which cannot
solved analytically, even for simply shaped targets.

We observe here that for a given aperture and frequency, the cavity will be highly resor
for discrete values df. These values are difficult to obtain for an arbitrary target. In Sectior
we describe a method which accurately and explicitly estimates these critical lengths.

3. THE ASYMPTOTIC METHOD

The basic idea behind the analysis that follows is to mathematically remove the iris fi
the problem. We do this by applying scattering matrix theory to describe the interaction
the iris with the incident electromagnetic field and with the electromagnetic field reflec
by the ceramic sample and the short. This theory is asymptotic in character, as it neg
the evanescent modes excited by the iris and ceramic sample.

We begin by placing an imaginary plane, labetedn Fig. 2, between the iris and the
cylindrical target. The positiom, is chosen so that the evanescent modes generated by
iris and the cylinder are negligible. The field at this plane is given by

E = [T1€"% 4+ E;e 7 sin(rx)9, (9)

whereT; andE; are unknown at this point in time.
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FIG. 2. Scattering matrix schematic forTag, o3 waveguide applicator.

We next focus our attention on the regibr 2|, which contains only the iris. The iris is
irradiated by two propagating modes. The first comes from the source, i.e., the first ter
(8a). The second mode is produced by the scattering from the cylinder and short, i.e
second term in (9). The iris appears to reflect a mode to the left, i.e., the second ter
(8a), and a mode to the right, i.e., the first term in (9). These coefficients are related b
linear equations

Ro=ri(@ + (1+ri(a)Ea, (10a)
T = A +r@) +ri@E;s, (10b)

where the matrix is called the scattering matrix for the iris. The matrix elemémtis the
reflection coefficient for an iris in an infinite and homogeneous waveguide and®) is
the corresponding transmission coefficient. These coefficients depend upon the iris he
a, and the dimensionless wave numkefpproximations for; are given in many standard
texts, one of which is [8]

—iS

ri@ k) = 11is (11a)
_ . 383 sin*(ra)
S= S(a, k) = k_l |:tar?(7Ta) — m s (11b)
k2

We next focus our attention on the region to the right of the planez, . The first term
in Eq. (9) can be interpreted as an incident mode of strefgthhich impinges upon the
cylindrical target and the short. The second term in Eq. (9) is the wave reflected by
structure. The amplitude of this wave is relatedity E; = 3, T1. The reflection coefficient
y1 is the amplitude of the reflected mode caused by a unit incident field upon the cere
sample and the shortithout the iris Inserting this relationship into Eqg. (10b) we obtain

14r1(a)

Ti=—
YT 1on@n

12)
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Inserting these results into (10a) we find the amplitude of the reflected mode

Ro=ri(@ + A +ri(@)n [ (13)

1+ri(a@) }
l-ri@n

These equations show the explicit dependenc&;adind Ry upon the iris heigha and
reflection coefficieny.

Finally, we summarize the above results. According to our approximation, the cera
sample is essentially irradiated byl&;, mode of strengtfT;. This mode can be thought
of as propagating in an infinite and homogeneous guide until it interacts with the cylin
and short to produce a reflected wave. This reflected mode is of strgiigthirhe effects
of the iris are contained ifi; and Ry.

To complete the description of our method we define

e=E/T., and h=H/T, (14)

which satisfy Maxwell's equations. The boundary conditions on the lateral walls of 1
waveguide, on the short, and across the sample are the same as before. However, w
have forz« 0

e = [€X? + e ] sin(zx)y, (15a)

Ky - _ . .
h = f[e"‘lZ — e R sin(r )% + —i %[e‘klZ + ek cosrx)z.  (15b)

The electromagnetic boundary value problem we must solve is Eq. (% &od h
throughout the entire waveguidethout the iris Once this is doney; is deduced from
Eq. (15), which allowd; to be obtained from Eq. (12) ari®} to be obtained from Eq. (13).
The electric fielcE is then obtained from Eqg. (14).

4. NUMERICAL METHOD

We use the finite difference time domain (FDTD) method to solve Eq. (7) throughout
entire waveguide without the iris, shown in Fig. 3. The electromagnetic fields are writ

CERAMIC MATERIAL

1
1
1
1
|
|
1
1
1
|
1
1
|
|

=7 1 I=7 r

FIG. 3. FDTD computational domain for hybrid method.
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there as

e= Ey(X, z, )y,
h = Hy(X, Z, )X + Hy(x, z, 1)z

Accordingly, Egs. (7) are replaced by the time dependent equations

aH, 19E,

= 16a
ot k 0z (162)
aH,  19E,

_ 1 16b
ot k ax ’ (16D)
9E, 1 [dH, aH,

— = — — —oEy. 16¢
at ke< PP ax) o5y (16c)

The electric and magnetic fields are evaluated alternatively at half time @i&yisand
(n+ 1/2)At) and the spatial coordinatés, z) are positioned afi A, jA):

HEF2G, ) = MRG0, ) + o (BpG § + 1) — Epd, ) (17a)
HEFY2G, ) = R0, ) - (EJG+L ) — EJGL D) (17b)
.. o At L. At L. L.
EJFNL ) = Kl— T) EJG. )+ kE—A(HX”*l/Z(u, )= HMY26 ) — 1)
n+1/2 i n+1/2 i ; oAt
— HJY26, ) + HYPY2(0 -1, ))) 1—|—T ) (17¢)

To truncate our computational domain we apply a mode killing, non-reflecting bound
operator to the total electric field on the plame= —I. Choosingd large enough assures us
that the evanescent waves are negligible. It follows from the operators presented in Ref
that

aa—EZy — 138—Ety = 2ik,€ %27V sin(rx). (18)
This operator allows incident waves to propagate to the right (into the computational don
and annihilates the reflected mode which propagates to the left (out of the computati
domain). Higher order boundary operators are derived in [15], but we shall not pursue t
here.

In discretized form Eq. (18) is written as

A .
EJfHL ) = E)HA j)—kl—L(EQ(O, )—EJ@. })) - 4iAted @A "0sin(rjA). (19)

To obtain an expression fd£y(0, ), a point outside the computational domain, we dis
cretize the following nondimensional wave equation, centeréd, 49,

PEy 1 82Ey+82Ey (20)
at2 k2 \ ax2 ax2 /-’
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This provides the following expression for the left boundary condition:

kA

. . kiA . . (ko A
+E)Lj+D+EQ |-+ EE;‘ 14, j) — dikyag®ar—nay

X sin(njA))]/(l—i- kkleAt). (22)

On the surface of the ceramic, the boundary conditions from Eq. (4) require that
tangential components of the electric and magnetic fields be continuous. We satisfy t
conditions by using average values for the permittivity on the boundary points of the cera
Finally, we prescribé&ey =0 on the shorz=z.

. . _ At ? _ .
E;(L, j) = {—EV(L H+2Ey )+ () (2E(2, j) — 4Ey(L, )) (21)

5. SIMULATIONS

To demonstrate the accuracy and computational efficiency of this hybrid numer
method, we present two example problems. The first is concerned with the microw
interaction with a slab which completely fills the cross-section of the waveguide. In-
second, a cylinder is placed in the guide as shown in Fig. 1. For each case we have fixe
microwave frequency at = 2.45x 10° Hz, the width of the waveguide W = 10922 mm,
and the iris height aA =17.5 mm. This gives u& =5.6 anda=0.42. In each example
we must specify a resonant lendthwhen the sample is a slab, an approximate formu
has been presented in Ref. [16]. When the sample is a post, the method presented
following section is used. For both cases we use the FDTD scheme to numerically s
Egs. (16) for the scaled fieldsandh. The iris is not present in these calculations. Onc
the reflection coefficient; ande are determined numerically, the electric field is obtaine
from E = Tie, whereT; is given by Eq. (12). Finally, we took =1/800, At =KkA /+/2,
andz =0.

We consider in our first example a slab of width 20.8 mm whose center is place
Z =110 mm. The resonant length for this casé is 2415 mm ( = 2.21) which-corres-
ponds to theTE;o3 mode for the closed cavity. The lengih,of the cavity is chosen to
maximize the electric field of the cavity if the sample is loss-less.

Figure 4 shows the amplitude of the electric figg, throughout the waveguide applicator
when the effective electrical conductivity, equals 0. The dimensionless incident electri
field has a strength of one and the maximum of the electric field in the cavity is 36. T
shows the resonant character of the applicator. Figure 5 shows the maximum of the ele
field for three different values of electrical conductivity£ 0.0, o = 0.001, ando = 0.01).
Itis readily apparent from these simulations that increasing the conductivity, while keey
the lengthl fixed, produces smaller fields. This is a detuning effect which is characteri:
of high Q cavities.

The convergence times (in CPU minutes on a SGI Indigo2 Impact R10000 workstat
forthese three cases were 70, 40, and 15 min, respectively. We realize that these convel
times are large for the simple geometry we are considering. This is because a fine mest
small A) is needed for the stringent converge of the electromagnetics fields to ensure
the cavity is resonant. To check these results and compare convergence times, we a
the FDTD to the same scattering problem with the iris present. The results were identic
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FIG. 4. Amplitude of E, throughout thel'E;4; waveguide applicator containing a slab wéth= 0.

the hybrid method. However, the convergence times for these simulations were 405,
and 80 min, respectively, a factor of roughly six times slower.

We consider in our second example a square post of width 41.5 mm whose cent
placed atX =54.6 mm andZ = L /2, as shown in Fig. 1. The resonant length is determin
using the method presented in the following section. It required one numerical simula
using the FDTD scheme to determine the required scattering matrix (i.e., to corppate
tc). This preliminary calculation took 55 CPU min (approximately one tenth the time
the hybrid calculation). The resonant length for this case-is2797 mm ( = 2.56) which
corresponds to théE; o3 mode for the closed cavity. The lengthof the cavity is chosen
to maximize the electric field of the cavity if the sample is loss-less.
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FIG. 5. Maximum amplitude ofE, throughout theTE,,; waveguide applicator with containing a slab with
o =0.0,0 = 0.001, andr = 0.01.

Figure 6 shows the amplitude of the electric fidfg, throughout the waveguide applicator
when the effective electrical conductivity = 0. The dimensionless incident electric field
has a strength of one and the maximum of the electric field in the cavity is 36. The con
plot focuses in on the area surrounding the post in such a way that the scaling betwee
z andx axis are in one-to-one correspondence. The convergence time for this simule
was 635 min. Again, this convergence time is large because a fine mesh (i.e.A3nsall
needed for the stringent converge of the electromagnetics fields to ensure that the c
is resonant. To check these results and compare convergence times, we applied the |
to the same scattering problem with the iris present. The results were identical to
hybrid method. However, the convergence time was 5060 min, a factor of roughly 8 tir
slower.

6. CALCULATION OF RESONANT LENGTHS

The hybrid method described in this paper requires an extremely accurate approxim
of the resonant length of the cavity. This critical length depends upon the size of the ape
and upon the geometry and electrical permittivity of the ceramic. The technique we |
develop to determine this critical length is again based upon scattering matrix theory.

We begin by considering the scattering problem shown in Fig. 7 whgiethe amplitude
of the incident mode. The short has been removed for the moment. We again pla
imaginary plane at = z,. Focusing our attention to the left of this plane, the iris again
irradiated by two modes of strengly andE; and reflects two modes of strengtRgand
T:. These coefficients are related by Egs. (10).

Next we consider the region to the right of= z,. If we irradiate the ceramic by two
incident modes of strengths, and E; and denote their reflected mode amplitudesRby
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FIG. 6. Amplitude of E, throughout thé'E,o; waveguide applicator containing a post with= 0.

andRs, respectively, then these amplitudes are related by

Rze_ikll/z EX R Ezeikll/2 + t.E3,
Rs = t.€*"/2E; + 1. Es.

(22a)
(22b)

Herer; andt. are the reflection and transmission coefficients caused by an incident moc
unit strength when the cylinder is locatedzat 0 in an otherwise empty and homogeneou
infinite waveguide. The cylinder is assumed to be symmetric about thezeir.

E;

Ejy
lp—
~—-
I 1
[} 1
[} 1
| Se————
CERAMIC
——
MATERIAL R
3

FIG. 7. Scattering matrix schematic for resonant length calculation.
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These coefficients depend upon the geometry and permittivity of the ceramic and
obtained numerically. If we only send a mode of unit amplitude in from the left, then
can use the FDTD technique described in this paper to compwedt.. However, we
must now truncate the numerical domain on the right &tz ; this boundary is chosen
far enough to the right of the cylinder to neglect evanescent modes. Then the approf
non-reflecting boundary operator is [15]

JE JE
_y+k_y:

0. 23
0z ! ot (23)

The coefficients . andt. are obtained from this numerical calculation. When the cerarr
contains no loss, power is conserved and these coefficients obey the relationships

Irel> +Itel> = 1 (24a)
Realr.t}) = 0. (24b)

Whenr andt. are determined numerically, these relationships are not satisfied exactly.
limits the accuracy of the calculation of the resonant length. Therefore, in the calculat
which follow, we taker . to be the value determined numerically and take be the value
which allows these relationships to be satisfied exactly. That is,

tC =41/1— |rC|2ei[%+ph(rc)]’ (25)

whereph(r.) is the phase of.

We now connect these two problems at the plarez,. There we observe that the
incident mode (from the right) on the iris is the reflected wave off the post. Equating mc
amplitudes we finde; = R,. Similarly, the mode reflected by the iris to the right is the
incident mode on the cylinder. Thus, we hale= E,. Finally, if the short is placed at
z=1/2 and the cylinder located at= 0, thenR; andE3 are related bye; =I'(I) Rs. Here
I'(l) = —exp(ikil) the reflection coefficient from the short. Combining these results wi
Eq. (22) givesE; = 1 T; where

Cre+ (rE—tg)ey
yl_( Tirekl )€ (20)

This is the reflection coefficient for a loss-less post locatezl=at/2 in a homogeneous
waveguide with a short a=1. It follows from this expression and Eq. (24) that=¢€?,
i.e., itis a complex number of unit amplitude.

The resonant length of the cavity will be length which maximiZgs From Eq. (12), it
is apparent that this maximum value corresponds to the minimum valtie-af y,|. Using
the approximation for; in Eq. (11), we find thafT; | will be maximum in value whea is
given by

On = —tan 1(1/9). (27)
The value of its maximum is

Tl = (14252 - 2SV/1+4 )12 (28)
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which for small aperture€S > 1) is approximated by
|T1| = 2S. (29)

Settingy; = €, with 6y given by Eq. (27), inserting this result into Eq. (26), and solvin

for | we obtain
| = Real(lr.](u)) , (30)
Ikl

where

re(l— ) — \/rg(l — @) 4 4(r2 — 2) &

= 2(2-12)

7. CONCLUSIONS

A hybrid numerical method was developed for describing the interaction of an elec
magnetic wave with a low-loss ceramic material in a hi@gleavity. The method utilizes
a combination of asymptotic and numerical techniques. The resultant hybrid method
used on two example problems: a slab and a post. It was found for these cases to
proximately six times faster than a straightforward application of the FDTD method. T
difference would become even greater if the aperture were made smaller than 17.5
However, both our hybrid method and a straightforward application of the FDTD mett
to the full problem suffer from the requirement that an extremely accurate estimate of
resonant length (frequency) is required. When@hef the cavity is extremely large, then
an error of magnitude\ in the resonant lengthmay detune the cavity and yield (1)
electric fields. Clearly, this scenario will defy any method.

It is worthwhile to point out that the numerical component of our hybrid scheme is |
bound to the FDTD method. Other numerical methods, such as finite element metho
any elliptic solver, can be used.
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